
 Talk To Your Computer

 475

Chapter 12. Talk To Your Computer

Just when you thought you were getting good at this, here
comes a whole new Logo world to explore, the world of list
processing. It’s one of the more interesting things about the
Logo language. In fact, while most people think about Logo
as a graphic language, it is actually based on Lisp, a list
processing language. Turtle graphics were added later.

Logo is called a high level language.
The first real computer language was
machine language, which meant
programming the computer using 0’s and
1’s. Then came assembly languages
followed by other early computer
languages that became known as “number
crunchers.” Everything they do deals with
numbers: money, inventories, counting,
calculating, and things like that.

Logo is different. It uses “symbolic computation” that
allows you to process ideas.

Just what does symbolic computation mean? Actually, it
gets sort of complicated. For our purpose — which is to keep
things simple — let’s just say it means that in addition to
numbers, you can process words and lists of words, numbers,
and things.

You can add two lists together or add words to a list. And
you can teach the computer to remember them. This is very
important to the study of Artificial Intelligence, or AI. You’ll
get introduced to that later in the this chapter.

In the meantime...
__

Talk To Your Computer

476

Did you ever talk to your computer?

Here's a short and simple procedure to get you started.
Type it, or load it (TALK.LGO), and then run it. What
happens?

It's like a short conversation, isn’t it? But, no, you’re not
really talking to the computer.

TO TALK
CT PRINT [HI! WHAT'S YOUR NAME?]
MAKE "NAME READWORD
MAKE "REPLY SE :NAME~

[MY NAME IS ERNESTINE.]
PRINT SE [I DON'T THINK WE'VE MET,] :REPLY
PRINT [HAVE YOU EVER TALKED TO A ~

COMPUTER?]
TEST READWORD = "NO
IFFALSE [PRINT ~

[WOW! DO YOU TALK TO TURTLES, TOO?]]
IFTRUE [PRINT [OH BOY! A BEGINNER.]]
END

 Talk To Your Computer

 477

Logo Sentences
Take a look at the TALK procedure. There's really only

one thing new there.

Do you see how SENTENCE works? SENTENCE, or SE
for short, takes two inputs and prints them together. These can
be two words, two lists of words, or a combination of words,
lists, characters, or numbers. The output is a list.

PRINT SE [I DON'T THINK WE'VE MET,] :NAME

I DON'T THINK WE'VE MET, is a list that is the first
input. The variable :NAME is the second. This is the word
you typed when the procedure asked you for your name.

SPECIAL NOTE: When you want to
add more than two inputs to SENTENCE,
or when you add additional inputs to
PRINT, TYPE, SHOW, WORD, or LIST,
use parentheses. For example:

PR (SE :NAME ", [HOW ARE
YOU?])

Let’s say that :NAME is the variable with the value of
Ernestine. This line is displayed as

ERNESTINE, HOW ARE YOU?

While it may seem strange, Logo treats the comma as a
separate word. Anything that follows a single quotation mark
is considered to be a word. That word ends with a space.
__

Talk To Your Computer

478

Logo Numbers, Characters, Words, and Lists
OK! You’ve explored a bit with Logo numbers,

characters, words, and lists. You’ve played a bit with a few
list processing commands too. But there is much, much more
to list processing.

So let’s review where we’ve been. It may seem strange,
but when you’re exploring so many different things, there are
times when you have to look back to know where you’re going.
This is one of those times.

“First, what do you really mean by list processing?”

“One of the really neat things about Logo is that it allows
you to process information, or data, in many different forms.
It can be numbers, words, lists of other words and lists,
property lists, or arrays.”
__

Numbers Let’s start with Logo numbers.

Numbers consist of one or more integers, decimals, or
exponents such as engineering notation. Remember integers?
Integers are “whole” numbers such as 3, 25, 423, or 1,324,598.
Fractions and decimals are not whole numbers. They are parts
of whole numbers, even if you have something like 1.5. 1.5
is part of 2, isn’t it?

All the commands shown below use whole numbers.

FORWARD 5 SETH 45
REPEAT 4 SETH 0
RIGHT 20 SETH -90

__

 Talk To Your Computer

 479

Characters Logo can also display alphabetic and numeric characters
using the CHAR or ASCII (American Standard Code for
Information Interchange) primitives. You’ve may have heard
about ASCII code before. It is a standard code that is used by
computer manufacturers to display a set of 128 characters
numbered from 0 to 127. These codes describe all the
punctuation marks, upper and lower case letters. There’s also
a high-level set of codes that go from 128 to 255

Take a look.

SHOW CHAR 65 displays the letter A.

SHOW CHAR 67 displays the letter C.

SHOW CHAR 49 displays the number 1.

SHOW CHAR 32 displays a space.

Yes, there’s even a code for a blank space.

CHAR followed by a code number displays the letter,
number, or punctuation mark for the specific ASCII code. But,
no, you don’t have to memorize ASCII code.

If you ever want to find out the ASCII code for a
something, type

SHOW ASCII <character>

SHOW ASCII "A displays 65.

SHOW ASCII "a displays 97.

Talk To Your Computer

480

Upper and lower case letters each have different codes.
That’s because they’re different shapes.

Try a few ASCII and CHAR commands so that you get a
good feel for what they do.
__

ASCII Art You may have seen cute little characters added to e-mail
and other messages — things like a happy face (:>) or the sad
face (:>(Some people do it like this: :-) or :-(

There are all sorts of these little additions. It’s a way to
add some expression to what can sometimes be dull on-line
text.

And, yes! You can add these touches to your procedures.
For example, you can display your signature every time you
create a picture.

TO SIGNATURE
CT TYPE [GRAPHICS BY JIM]
TYPE CHAR 32
TYPE CHAR 40
TYPE CHAR 58
TYPE CHAR 62
PR CHAR 41
END

Run this procedure and

GRAPHICS BY JIM (:>)

is printed in the Commander window.

You can also write it like this:

 Talk To Your Computer

 481

TO ARTIST
(TYPE [GRAPHICS BY JIM] CHAR 32 CHAR 40

CHAR 58 CHAR 62) PR CHAR 41
END

Spacing Before you leave this procedure, there’s something else
to look at.

(TYPE [GRAPHICS BY JIM] CHAR 32 CHAR 40
CHAR 58 CHAR 62) PR CHAR 41

Why not include everything with the TYPE command?
Why change to the PRINT command at the end? Or, why not
just use PRINT in parentheses?

(PR [GRAPHICS BY JIM] CHAR 32 CHAR 40
CHAR 58 CHAR 62 CHAR 41)

TYPE and PRINT do essentially the same thing, except
that TYPE does not add a space between the characters or a
carriage return at the end of the line.

• TYPE prints the string of characters all on one line.
You must include a PRINT or SHOW command at the
end of the command line to move to the next line.

• PRint and SHOW add a space between each character
and a carriage return after printing the string of text,
which sends the cursor to the next line.

Try these commands:

TYPE "TRY TYPE "THIS

What happened? Nothing — because there wasn’t a
PRINT or SHOW command at the end. So try this:

Talk To Your Computer

482

TYPE "TRY TYPE "THIS SHOW "
TRYTHIS

There is no space between the two words. What about

SHOW "TRY SHOW "THIS
TRY
THIS

One more time, this time with a single space after the
backslash. What happens?

(TYPE "TRY "\ "THIS) SHOW "

What happens when you insert two spaces after the
backslash? What’s that tell you about the backslash?

Play around with the spacing when using different
commands. This comes in handy at times, especially if you
want to start displaying some fancy ASCII artwork.

|\ /|
| \/ |
| /\ |
|/ \|
|o o|
|\../|
\/--\/
 __/

__
SPECIAL NOTE: When you want to

run text procedures such as ARTIST,
ASCII, and SIGNATURE, open the
Commander window. That’s where they
are displayed. Either drag the edge up, or
left-click on the middle of the three boxes
on the right of the Title bar.

__

 Talk To Your Computer

 483

Take a look at ASCII.LGO file \procs\chpt12 subdirectory
for an interesting twist on ASCII art.

This one’s a famous movie title of some years back.

 __

Add Some
Pizzazz

After TurtleBusters, why not add some Pizzazz to your
signature? Try this:

TO SIGNATURE
CT REPEAT 10 [TC 32]
TC 71 TC 114 TC 97 TC 112 TC 104 TC 105 TC 99
TC 115 TC 32 TC 66 TC 121 TC 32 TC 74 TC 105
TC 109
FLASHER 1 1
END

TO TC :C
TYPE CHAR :C
END

Talk To Your Computer

484

TO FLASHER :X :Y
CT REPEAT :X [PR "]
REPEAT :Y [TC 32]
TC 71 TC 114 TC 97 TC 112 TC 104 TC 105 TC 99
TC 115 TC 32 TC 66 TC 121 TC 32 TC 74 TC 105
TC 109 PR "
MAKE "X :X + 1
MAKE "Y :Y + 5
IF :X > 24 [MAKE "X 1 MAKE "Y 1]
WAIT 3 FLASHER :X :Y
END

Put your own name in this procedure (FLASHER.LGO)
and then run it. If you can’t find a list of the ASCII codes, why
not write a procedure that prints them out for you?

That’s not as hard as you might think. So why not give it
a try. You can do it.

This new SIGNATURE procedure is a step in the right
direction, but it really isn’t that flashy. What else can you add
to this?

Add Some Real
Pizzazz

But what about the graphics screen? Why not see what
you can do to add a flashy signature to your drawings on the
graphics screen?

LABEL is one of those commands that means different
things in different versions of Logo. In MSW Logo, LABEL’s
input, which may be a word or a list, is printed on the graphics
screen.

To define the font in which the word or list is to be
displayed, you have two choices:

 Talk To Your Computer

 485

1. Open the Select menu and left-click on Font.

The Font selection window is displayed.

Here you can select the Font. This defines what the text
is going to look like. Left-click on a font to see what it looks
like in the Sample window.

You can change the style of the font to display:

• regular type.

• type in italics

• bold type

• bold italics.

The third window is where you select the size you want
to display. Type is measured in points, 72 points to the inch.
This book is printed in 14 point Times New Roman to give
you some idea of size. The Sample window also helps you
select the size you want.

The other method for selecting a font is to use the
SETTEXTFONT command.

Talk To Your Computer

486

SETTEXTFONT [[font] <attribute list>]

The input to the MSW Logo command, SETTEXTFONT,
describes a font and the attributes it is to display: the size of
the type and whether it is to be in bold, italics, underlined, etc.

MSW Logo gives you a wide range of attributes that
define exactly how the text is to appear. These include:

SETTEXTFONT
[
[Font]
Height
Width
Orientation
Weight
Italic
Underline
StrikeOut
CharSet
OutPrecision
ClipPrecision
Quality
PitchAnd-Family
]

The on-line help file describes each of these attributes.
However, you don’t have to use any of them if you don’t want
to. You can accept the default values. Just type

SETTEXTFONT []

You may want to specify the size of the type. So type the
name of the font followed by a height and width.

 Talk To Your Computer

 487

SETTEXTFONT [[HELV] 24 16]
LABEL [Graphics by Morf!]

MSW Logo prints
in upper and lower
case. It also prints in
the direction the turtle
is facing.

Why not experiment with the font attributes? See what
type of crazy pizzazz you can come up with. Then you can
get back to list processing.
__

Logo Words Logo words are easy. They’re anything between a
quotation mark to the left and a space on the right. However,
there can not be any spaces in a word.

Just remember that when you identify a Logo word, you
must use a quotation mark in front of it. You don’t have to do
that with numbers. Logo treats 3 as a number just as it treats
325491587 as a number.

As you have seen, Logo treats a single letter or a
punctuation mark as a word. It treats

PRINT "T the same as

PRINT "Tyranosaurus

Of course, it isn’t really strange at all once you think about
it. “A” is a word, isn’t it? It’s one of the three articles in the
English language. The other two are “an” and “the.”

Talk To Your Computer

488

What about the word “I?”
A Logo word is any combination of letters, numbers, and

punctuation marks with no spaces.

SHOW “ABC_456
displays ABC_456.

SHOW “A93HK8
displays A93HK8.

__

SENTENCE and
WORD

As you saw in the TALK procedure, SENTENCE
produces a list. However, WORD, produces another word.

To see the difference, try something like this:

PRINT WORD "A "B
PRINT SENTENCE "A "B

or this:

PRINT WORD 1 2
PRINT SE 1 2

Hmmmm, what would happen if we did this:

MAKE "A WORD 1 2
MAKE "B WORD 3 4
PRINT :A + :B

Try this:

MAKE "C WORD :A :B
PRINT :C

 Talk To Your Computer

 489

What happened? Bet you got 1234, right? So let's do
some testing to see what we've got here.

PRINT NUMBERP :C
or
IF NUMBERP :A [PRINT “TRUE]

Remember NUMBERP? If you want to review, go back
to the Great Math Adventure chapter.

The statements above tell Logo that if :A is a number,
print TRUE. Another way to say this is:

IF NOT NUMBERP :C [PRINT “FALSE]

Even though you created a word from :A and :B, it’s still
a number, right?

Before we leave this confusion, let’s mess it up some
more. What would this line print?

PRINT (WORD 1 CHAR 32 2 CHAR 32 3)

The result would look something like a sentence but
would actually be a word.

1 2 3

This actually reads as 1 space 2 space 3, because the spaces
are deliberately inserted as characters. In Logo, that’s a word.

Just to check the difference, try it this way:

PRINT (WORD 1 2 3)

Talk To Your Computer

490

Where’d the spaces go?

Just to be absolutely sure, try this one:

MAKE "CHECK (WORD 1 CHAR 32 2 CHAR 32 3)
SHOW WORDP :CHECK

The result True is displayed. So I guess that the output
is a word, not a list.
__

Lists Lists are elements within square brackets — []. A List
can include words, numbers, or other lists. Of course, if a List
contains a list, both have to be enclosed in brackets.

PRINT [This is a list.]

displays
This is a list.

PRINT [1 2 3 this is also a list_A B C?]
displays

1 2 3 this is also a list_A B C?

What about this?

PRINT [1 2 3 [this is also a list_A B C]]

Here’s a list within a list that displays as:

1 2 3 [this is also a list_A B C]

Do you remember the difference between how PRINT
displays lists and how SHOW displays them? Check it out.

 Talk To Your Computer

 491

Creating Lists You can, of course, create lists. You started this in Chapter
8 when you used SETPOS LIST :X :Y. Now lets try something
different:

MAKE "SAMPLE (LIST 1 2 3 45 98 "PR "JIM)
SHOW :SAMPLE

[1 2 3 45 98 PR JIM] is displayed.

In the previous section on words, you asked if :CHECK
was a word?

MAKE "CHECK (WORD 1 CHAR 32 2 CHAR 32 3)
SHOW WORDP :CHECK

Now change that second line to

SHOW LISTP :CHECK

What’s the response going to be, TRUE or FALSE?
__

LIST or [] When do you use the LIST command? When do you use
brackets? Why does SETPOS LIST :X :Y work when SETPOS
[:X :Y] doesn’t?

There is a very simple but very important rule that explains
this. Brackets do not execute what’s inside them. They merely
list the contents. LIST makes things happen.

Remember this when writing procedures.
__

Talk To Your Computer

492

Logo Postcards Has your family ever been on a vacation and sent lots of
postcards to friends back home? Those cards seem to be all
the same, don't they.

Dear ______,

Here we are in wonderful ______. We're having a great
time ________ and _______. The weather is very _______.
We'll be home _________. See you then.

Love,

Wouldn't it be nice to have a procedure to print your cards

for you.

TO SETUP
PRINT [WHO IS THIS CARD FOR?]
MAKE "FRIEND READWORD
PRINT [WHERE ARE YOU WRITING FROM?]
MAKE "VAC READWORD
MAKE "VAC WORD :VAC ".
PRINT [WHAT ARE YOU DOING?]
MAKE "ACT1 READWORD
PRINT [WHAT ELSE?]
MAKE "ACT2 READWORD
MAKE "ACT2 (WORD :ACT2 ".)
PRINT [HOW'S THE WEATHER?]
MAKE "WEA READWORD
MAKE "WEA WORD :WEA ".
PRINT [WHEN WILL YOU BE HOME?]
MAKE "ARR READWORD
MAKE "ARR WORD :ARR ".
PRINT [HOW WILL YOU SIGN THE CARD?]

 Talk To Your Computer

 493

MAKE "SIG READWORD
END

Now we’ll print this information on the postcards.

TO POSTCARD
SETUP CT TS
PRINT SE [DEAR] :FRIEND
PRINT "
TYPE SE [HERE WE ARE IN WONDERFUL] :VAC

PRINT [WE’RE HAVING]
TYPE SE [A GREAT TIME] :ACT1 TYPE SE "AND

:ACT2) PRINT "THE
TYPE SE [WEATHER IS] :WEA PRINT SE [WE'LL BE

 HOME] :ARR
PRINT [SEE YOU THEN.]
PRINT "
PRINT [LOVE,]
PRINT "
PRINT :SIG
END

Do you remember the difference between PRINT and
TYPE?

TYPE prints its input without adding a carriage return at
the end the way that PRINT does. TYPE lets you print text
more like you do with word processing software. PRINT only
allows you to print one string of text on a line. Of course, you
can also write the line as

PR (SE [A GREAT TIME] :ACT1 "AND :ACT2 “.
"THE)

Talk To Your Computer

494

See! There’s usually an easier way if you’ll look for it.
But there’s still a problem with the postcard procedure.
__

Making
Headlines

Look at any book on Logo and usually you’ll find a
procedure that picks parts of speech and combines these into
sentences — something like this:

TO HEADLINES
MAKELISTS
PRINTHEADLINES
END

TO MAKELISTS
MAKE "ADJ [HAPPY GLAD ANXIOUS GOOD
 SINCERE]
MAKE "NOUN [SANTA PEOPLE FRIENDS
 PARENTS]
MAKE "VERB [GAVE RECEIVED SPREAD

SHAREDWISHED]
MAKE "OBJ [GIFTS LOVE CHEER GLADNESS JOY
 HAPPINESS]
END

TO PRINTHEADLINES
PR (SE PICK :ADJ PICK :NOUN PICK :VERB PICK
 :OBJ)
WAIT 10
PRINTHEADLINES
END

When you type HEADLINES, the first thing that Logo
does is run the MAKELISTS procedure to make up lists of
words: ADJ, NOUN, VERB, and OBJ. Then the next
procedure is called.

 Talk To Your Computer

 495

PRINTHEADLINES tells the computer to PRint a
SEntence — but what sentence? PICK is a command that
randomly selects an item from a list. So it randomly picks
elements from the four lists and prints them as a sentence.

Some versions of Logo don’t have a PICK command. You
can write one like this:

TO PICK :WORDS
OUTPUT ITEM (1 + RANDOM (COUNT :WORDS))
 :WORDS
END

That’s fine. But what’s with all the parentheses?

To understand any Logo statement, you start at the left
and move to the right, one command at a time. OUTPUT takes
one input. That input is ITEM.

ITEM takes two inputs: a number and something else, like
the 4th list, the 2nd word. The next thing you see after ITEM
is in parenthesis. That means that

(1 + RANDOM (COUNT :WORDS))

is all one element. RANDOM typically selects a number
between 0 and, in this case COUNT :WORDS. But again,
what about all those parentheses?

The easiest way to read those is to start with the
parentheses on the inside:

(COUNT :WORDS)

Talk To Your Computer

496

The first task for PICK in the PRINTHEADLINES
procedure is to select an adjective — PICK :ADJ. So, in the
first case, (COUNT :WORDS) temporarily becomes

(COUNT :ADJ)

How many adjectives (:ADJ) are inside the brackets in the
MAKELISTS procedure? There are five adjectives, right? So,
if you COUNT the ADJectives, you get 5. Substitute 5 in the
original procedure and here’s what you get:

(1 + RANDOM (5)) which is the same as 1 + RANDOM
5 after you take the unneeded parentheses away.

1 + RANDOM 5 gives you the five numbers 1, 2, 3, 4 and
5. So now we have:

OUTPUT ITEM RANDOM 5 :WORDS

or

OUTPUT a randomly selected item from the five words
in the ADJ list.

Now the following line begins to make a bit more sense:

PR (SE PICK :ADJ PICK :NOUN PICK :VERB PICK
:OBJ)

Logo is going to print a random ADJ, a random NOUN,
a random VERB, and a random :OBJ. You'll get sentences like

HAPPY SANTA GAVE CHEER
GLAD PEOPLE RECEIVED GIFTS
ANXIOUS PARENTS WISHED JOY

 Talk To Your Computer

 497

HAPPY PARENTS SPREAD LOVE
HAPPY PEOPLE GAVE GIFTS
SINCERE FRIENDS SHARED LOVE
ANXIOUS PEOPLE RECEIVED CHEER

Explore these headlines some more, why don’t you?
Make a longer headline using five or more words. Combine
words and lists. You can even throw in a sentence or two.

The main thing is to explore, to learn, and to have some
fun doing both.
__

Word Games
Logo postcards and headlines may seem a bit silly. But

what about a word game — like the game of Nim. This also
gives you the chance to see more Windows commands in
action.

Nim is a game the computer always wins. Can you figure
out why? Take a look at the NIM.LGO procedure in the
\procs\chpt12 subdirectory to find the answer.

Before you start digging into the windows programming
tools used in Nim, here’s a couple of challenges for you.

1. Change the game so that the computer does not always
win.

2. Word games aren’t very pretty. Why not change this into
a graphic game where you pick real stones, or trees, or
shapes?

3. Set up different rows of objects so the player has to select
which row to select from?

What other things can you dream up?
__

Talk To Your Computer

498

Windows Programming
"Logy, I’m having enough trouble learning Logo for

Windows. Now you want me to learn Windows
programming?"

"Well, not exactly. However, to use some of the features
of MSW Logo, you have to learn a few of the things about
what makes windows programming different from other Logo
programming. What follows are a few examples to explore.
For a better description, read the Windows Functions section
of On-line Help."

Up until now, you’ve seen how Logo reads one line at a
time and then interprets that line from left to right. That’s the
Modal mode where the application is in control. Windows
programming supports two modes or methods of
programming, Modal and Modeless.
__

Modal Mode Those of you who have done some DOS programming
before are familiar with the Modal mode. This is where the
program or procedure controls the action. It is the type of
programming used in the NIM procedure above.

 DIALOGCREATE is used to stop the action of a
procedure while it asks you for some information. In the case
of NIM, it asks you to pick a number.

DIALOGCREATE creates a dialog box in which you can
add radiobuttons, scrollbars, listboxes, checkboxes, and the
other types of input devices you see in windows applications.
DIALOGCREATE is similar to the WINDOWCREATE
command described below, except it will not return to the
calling procedure until the dialog is closed.

 Talk To Your Computer

 499

Dialog boxes aren’t the only devices that stop the action.
NIM shows you examples of some others: the YESNOBOX
and the MESSAGEBOX. There’s also the QUESTIONBOX.
Change the OVER procedure to something like this and see
what happens.

TO OVER
PR [There is one stone left. I win again.]
MAKE "ANS QUESTIONBOX [Nim] ~

[Want to play again?]
IFELSE (FIRST FIRST :ANS) = "Y [NIM][CT PR ~

[Bye for now!]]
END

__

Modeless Mode The Modeless mode is just the opposite of Modal mode.
In the Modeless mode, the Window (user) is in control. This
takes some getting used to but is a very important idea.

In the Modeless Mode, you use the WINDOWCREATE
command as in the MODELESS procedure listed below.

TO START
CS CT
PR [Let's draw a shape.]
PR [How many sides should it have?]
MODELESS
END

TO MODELESS
WINDOWCREATE "ROOT "SELECTOR ~

"SELECTBOX 250 0 100 180 []
GROUPBOXCREATE "SELECTOR "NIM 10 10 80 140
RADIOBUTTONCREATE "SELECTOR "NIM "ONE ~

[ONE] 20 15 60 15
RADIOBUTTONCREATE "SELECTOR "NIM "TWO~

[TWO] 20 30 60 15

Talk To Your Computer

500

RADIOBUTTONCREATE "SELECTOR "NIM
"THREE [THREE] 20 45 60 15

RADIOBUTTONCREATE "SELECTOR "NIM ~
"FOUR [FOUR] 20 60 60 15

RADIOBUTTONCREATE "SELECTOR "NIM ~
"FIVE [FIVE] 20 75 60 15

RADIOBUTTONCREATE "SELECTOR "NIM ~
"SIX [SIX] 20 90 60 15

RADIOBUTTONCREATE "SELECTOR "NIM
"SEVEN [SEVEN] 20 105 60 15

RADIOBUTTONCREATE "SELECTOR "NIM ~
"EIGHT [EIGHT] 20 120 60 15

RADIOBUTTONCREATE "SELECTOR "NIM ~
"NINE [NINE] 20 135 60 15

RADIOBUTTONSET "ONE "TRUE
RADIOBUTTONSET "TWO "FALSE
RADIOBUTTONSET "THREE "FALSE
RADIOBUTTONSET "FOUR "FALSE
RADIOBUTTONSET "FIVE "FALSE
RADIOBUTTONSET "SIX "FALSE
RADIOBUTTONSET "SEVEN "FALSE
RADIOBUTTONSET "EIGHT "FALSE
RADIOBUTTONSET "NINE "FALSE
BUTTONCREATE "SELECTOR "GAME "OK ~

35 150 25 20 [EXECUTE]
END

TO EXECUTE
IF RADIOBUTTONGET "ONE [HT GREET STOP]
IF RADIOBUTTONGET "TWO [ST GREET STOP]
IF RADIOBUTTONGET "THREE [CS REPEAT 3 ~

[FD 50 LT 120] GREET STOP]
IF RADIOBUTTONGET "FOUR [CS REPEAT 4 ~

[FD 50 LT 90] GREET STOP]
IF RADIOBUTTONGET "FIVE [CS REPEAT 5 ~

[FD 50 LT 72] GREET STOP]
IF RADIOBUTTONGET "SIX [CS REPEAT 6 ~

[FD 50 LT 60] GREET STOP]

 Talk To Your Computer

 501

IF RADIOBUTTONGET "SEVEN [CS REPEAT 7 ~
[FD 50 LT 360/7] GREET STOP]

IF RADIOBUTTONGET "EIGHT [CS REPEAT 8 ~
[FD 50 LT 45] GREET STOP]

IF RADIOBUTTONGET "NINE [CS REPEAT 9 ~
[FD 50 LT 40] GREET STOP]

END

TO GREET
PR [How about that!]
END

TO DEL
WINDOWDELETE "SELECTOR
END

 In MODELESS, the dialog box created by
WINDOWCREATE doesn’t need to be deleted. You can
continue to press buttons to draw all the shapes you want.

Type DEL to delete the dialog box.

This is barely a taste of what you can do with windows
and dialog boxes. To learn more, explore the on-line help files
for each of these new commands. Most importantly, explore
the examples given for each command. For example, here’s
a slight variation of the DODRAW procedure listed for the
LISTBOXADDSTRING command.

TO DEL
WINDOWDELETE "MYWINDOW
END

TO DODRAW
;SELECT FIGURE FROM LISTBOX AND THEN ~

CLICK ON DRAW BUTTON
CS

Talk To Your Computer

502

IF EQUALP [TRIANGLE] LISTBOXGETSELECT ~
"MYLIST [REPEAT 3 [FD 100 RT 120]]

IF EQUALP [SQUARE] LISTBOXGETSELECT ~
"MYLIST [REPEAT 4 [FD 100 RT 90]]

END

TO START
WINDOWCREATE "MAIN "MYWINDOW ~

"MYTITLE 0 0 100 100 []
LISTBOXCREATE "MYWINDOW "MYLIST ~

25 0 50 50
LISTBOXADDSTRING "MYLIST [TRIANGLE]
LISTBOXADDSTRING "MYLIST [SQUARE]
BUTTONCREATE "MYWINDOW "MYDRAW ~

"DRAW 25 50 50 25 [DODRAW]
END

For a better example, take a look at the MODELESS
procedure in the Examples\Windows directory that was setup
when you installed MSW Logo.
__

More Fun With
Text

Among the first things you did in this book was to make
different shapes. Well, how about making word shapes? That
means making shapes out of the text you print on the screen.
In addition to being a fun project, it gives you some practice
with some new list processing commands.

Here's an easy one to start with. It’s on your CD as
WORDTRI.LGO. What’s the new command?

TO WORDTRIANGLE :WORDS
IF :WORDS = " [STOP]
PR :WORDS
WORDTRIANGLE BUTFIRST :WORDS
END

 Talk To Your Computer

 503

This procedure simply prints :WORDS and then calls
itself BUTFIRST :WORDS. BUTFIRST, BF for short, means
it prints everything BUT the FIRST element of the variable
:WORDS. You’ll see how this works as we go along.

WORDTRIANGLE "LOGOADVENTURES

The result:

LOGOADVENTURES
OGOADVENTURES
GOADVENTURES
OADVENTURES
ADVENTURES
DVENTURES
VENTURES
ENTURES
NTURES
TURES
URES
RES
ES
S

 And this raises some questions:

• What would happen if :WORDS was a list? What
would you have to change to drop the first letter of each
word?

• What would you have to do to have the procedure drop
the last letter?

Maybe if you turn that triangle around, you’ll get some
ideas.
__

Talk To Your Computer

504

Turning It
Around

Here’s one very simple way to turn the triangle around.
All you have to do is more the PR :WORDS command.

TO WORDTRIANGLE :WORDS
IF :WORDS = " [STOP]
WORDTRIANGLE BUTFIRST :WORDS
PR :WORDS
END

These two word triangle procedures show the difference
between tail-end and embedded recursion. And while this
second procedure does turn the triangle around, it

Have the procedure print the first letter, then the first and
second, then the first three, and so on. Along the way, you’ll
see how some other list processing commands work. (This is
WORDTRI2.LGO on the Sourcebook diskette.)

You’ve already seen the command FIRST. It selects the
first element of a word or list. In the START procedure, after
clearing all the text, Logo prints the FIRST element of the
variable :WORDS. If you use the same variable again, an L
is displayed.

TO START :WORDS
CT PR FIRST :WORDS
MAKE "LINE WORD (FIRST :WORDS) ~

(FIRST BUTFIRST:WORDS)
PR :LINE
REST BF BF :WORDS
END

 Talk To Your Computer

 505

After the L is displayed, Logo makes a new word, :LINE,
by combining FIRST :WORDS with FIRST BUTFIRST
:WORDS. What would that be?

In the WORDTRIANGLE procedure, you found out that
BUTFIRST :WORDS printed everything but the first element
of :WORDS. Using the traditional Logo parsing technique,
start at the right with FIRST. That takes one input, which is
BUTFIRST :WORDS. BUTFIRST :WORDS removes the
first element but leaves the rest of the variable there. So what
does FIRST BUTFIRST do?

You got it. It prints the first element in BUTFIRST
:WORDS, or 0. So here’s what you have when the START
procedure runs:

L
LO

This sets up the new triangle. Since you don’t want to
repeat these steps, you move on to the REST procedure for the
rest of the triangle.

TO REST :WORDS
IF :WORDS = " [STOP]
MAKE "LINE WORD :LINE (FIRST :WORDS)
PR :LINE
REST BF :WORDS
END

If you’ll follow the printout below, you’ll see how it
works. REST picks up the variable :LINE from START. After
START has run, :LINE has a value of . :WORDS has a value of

GOADVENTURES

Talk To Your Computer

506

MAKE "LINE WORD :LINE (FIRST :WORDS)

Make "LINE a word by combining LO and FIRST
:WORDS or G. This keeps repeating: LOG, then LOGO, etc.

Get the idea?

Here’s what it looks like:

L
 LO

LOG
LOGO
LOGOA
LOGOAD
LOGOADV
LOGOADVE
LOGOADVEN
LOGOADVENT
LOGOADVENTU
LOGOADVENTUR
LOGOADVENTURE
LOGOADVENTURES

We’ve got one more triangle to check out. How would
you make this one?
__

A Logo Tree Pick your way through this one. You’ve been through the
other two so this one should be easy.

TO START :WORDS
CT TC ((COUNT :WORDS) / 2) PR FIRST :WORDS
MAKE "LINE (WORD (FIRST :WORDS) ~

(FIRST BF :WORDS) (FIRST BF BF :WORDS))
TC ((COUNT :WORDS) / 2) - 1 PR :LINE

 Talk To Your Computer

 507

REST BF BF BF :WORDS
END
TO TC :N
IF :N < 1 [STOP]
REPEAT ROUND :N [TYPE CHAR 32]
END

TO REST :WORDS
IF :WORDS = " [STOP]
IF COUNT :WORDS = "1 ~

[MAKE "WORDS WORD :WORDS CHAR 32]
MAKE "LINE (WORD :LINE (FIRST :WORDS)~

(FIRST BF :WORDS))
TC ((COUNT :WORDS) / 2) - 1 PR :LINE
REST BF BF :WORDS
END

You’ve already explored COUNT. This tells you that to
make an even tree shape, you have to type blank spaces (CHAR
32) to take you to the middle of :WORDS — COUNT
:WORDS / 2. The rest shouldn’t be too difficult to follow.

 L
 LOG
 LOGOA
 LOGOADV
 LOGOADVEN
 LOGOADVENTU
 LOGOADVENTURE
LOGOADVENTURES!

Once you get that one figured out, you’re on your own.
What other word shape procedures can you make?

How about changing all the FIRST commands to LAST,
and all the BUTFIRST commands to BUTLAST. What

Talk To Your Computer

508

happens? Can you rewrite these three procedures using LAST
and BUTLAST?

How about making a square in the middle of the screen?
Have the procedure repeat printing a phrase until it completes
a square. Can you make a circle?
__

The Amazing
Oracle

Here’s a fun game to play on a group of friends or on a
class. The Oracle thinks up a story. The object of the game
is to figure out the story by asking the Oracle direct questions
that can be answered by Yes or No.

Well, the Oracle is sneaky. Take a look at the procedures
and see if you can figure out how it works. Then take another
look. Because the Oracle gives you some ideas on how to use
LAST and BUTLAST to handle lists.

TO ORACLE
CLEARTEXT TEXTSCREEN
PR [I'M THINKING OF A STORY.~
 ASK ME DIRECT QUESTIONS,]
PR [THOSE I CAN ANSWER WITH YES OR NO.]
PR [THEN I’LL TELL YOU WHAT IT IS.]
QUIZ
END

TO QUIZ
PR "
PR [WHAT’S YOUR QUESTION?]
MAKE "QUESTION READLIST
IF NOT (LAST LAST :QUESTION) = "? [PRINT ~
 [QUESTIONS MUST END WITH A QUESTION ~

 MARK.] QUIZ]
IF MEMBERP ~

 Talk To Your Computer

 509

(LAST BUTLAST LAST :QUESTION)
[A E I O U] [PR "YES QUIZ STOP]

IF (LAST BUTLAST LAST :QUESTION) = "Y ~
[PR "MAYBE QUIZ STOP]

PR "NO
QUIZ
END

Oracle begins by asking you for a question.

MAKE "QUESTION READLIST
When you type a question, you are actually typing a list.

This list becomes the variable :QUESTION. Logo then checks
to see if you added a question mark.

IF NOT (LAST LAST :QUESTION) = "? [PRINT
 [Questions must end with a question mark.] QUIZ]

What this says is that if the LAST character of the LAST
word in the list is not a question mark, print the statement and
return to the top of the QUIZ procedure.

Now take a look at this one.

IF MEMBERP (LAST BUTLAST LAST :QUESTION)
[A E I O U] [PR "YES QUIZ]

That really does makes sense because what this statement
says is if the next to the last — last but last — character of the
last word of the sentence is a member of the list [a e i o u],
print Yes and then call the QUIZ procedure again.

If the next to last character is not a member of the list,
Logo reads at the next line.

Talk To Your Computer

510

IF (LAST BUTLAST LAST :QUESTION) = "Y [PR
"MAYBE QUIZ]

This time, Logo asks if the next to last character is ’y. If so,
Logo prints Maybe and calls the QUIZ procedure again.

By the way, what’s LAST :QUESTION? This question
gives you a clue. If the next to last character is neither a vowel
or ’y, Logo prints ’No and calls QUIZ again.

Now do you know how the Oracle works? It simply
answers your questions based on the last letter in the last word.
You’re actually the one who makes up the story. And some
of them can get pretty crazy.

Now that you’ve had a healthy taste of list processing,
take a look at the Data Structure Commands in the MSW Logo
On-line Help file. This will give you an overview of the other
list processing commands. You’ll be using more of them in
the next exercise.

Time-out for a few experiments first.
They’re really a review, but you know how
Morf hates tests.

Try this one:

SHOW LAST "TEST
(You can use SHOW or PRINT)

What do you think is going to be shown (or printed)?

SHOW FIRST "TEST

What’s this going to show?

 Talk To Your Computer

 511

How about these?

SHOW BUTFIRST "TEST
SHOW BF [THIS IS A TEST.]
SHOW LAST BF [THIS IS A TEST.]
SHOW LAST FIRST BF [THIS IS A TEST.]
One HUGE Gold Star if you said S for that last one.

Try a few of your own. Using the commands of FIRST,
LAST, BUTFIRST, and BUTLAST, you can pick any letter
of any word in a list.
__

Word Sums “What’s two plus two?”

“How easy can you get? It’s four, of course!”

“How’d you get the answer?”

“I added two plus two and got four. What do you think?”

“Did you add 2 + 2? Or two plus two? If you’re talking
about Logo, there is a difference you know.”

“Well, I never really thought about that.”

“OK, let’s give it a whirl.”

Adding words together is a great exercise in list
processing. Here’s a brief description of how it works.

WORDSUM "THREE "SIX

Talk To Your Computer

512

WORDSUM counts through a list to see where the words
THREE and SIX are located. They are in the third and the
sixth position. So, Logo then adds

3 + 6 = 9

Finally, Logo counts to the ninth position in the list and
prints that word as the answer: NINE.

Logo does one more thing with this procedure; that’s to
determine if there if the number is a ’teen. In the problem
above, it isn’t, so Logo simply printed the answer. But let’s
take a look at another example:

WORDSUM "EIGHT "SIX

We know the answer is 14. To print it, Logo went to the
TEENS procedure and output

The answer is fourteen.

Take a look at the full procedure;WORDSUM.LGO in
\procs\chpt12. Look it over and then let’s take it apart.

The first question, as you start to look at WORDSUM, is
what do :NUMS1 and :NUMS2 equal.

Turn on TRACE and then run the procedure again. This
allows you to follow the recursive calls of SET1 and SET2.
Then you go to ADDNUMS.

Another way is to just explore the procedure on paper.
Start with what you know.

WORDSUM "EIGHT "SIX

 Talk To Your Computer

 513

:NUM1 = EIGHT
:NUM2 = SIX
:NUMS = [ZERO ONE TWO THREE FOUR

 FIVE SIX SEVEN EIGHT NINE]

From the WORDSUM procedure:

MAKE "NUMS1 SET1 :NUM1 :NUMS
MAKE "NUMS2 SET2 :NUM2 :NUMS

If you have trouble stepping through these first two lines,
just add the following before ADDNUMS in WORDSUM.

MAKE "NUMS1 SET1 :NUM1 :NUMS
MAKE "NUMS2 SET2 :NUM2 :NUMS
PR :NUMS1
PR :NUMS2
IGNORE RC

This will print the variables :NUMS1 and :NUMS2 and
stop until you press a key to continue. This gives you a chance
to check on what’s going on.

:NUMS1 equals EIGHT NINE
:NUMS2 equals ZERO ONE TWO THREE ~

FOUR FIVESIX

Make sure you understand how those variables were
selected before proceeding.

TO ADDNUMS
MAKE "NUMS1 SE :NUMS1 :NUMS
MAKE "NUMS3 (FIRST :NUMS)

Talk To Your Computer

514

REPEAT (COUNT :NUMS2) - 1 [MAKE "NUMS1 BF
 :NUMS1 IF (FIRST :NUMS1) = (FIRST :NUMS)

[MAKE "NUMS3 FIRST BF :NUMS]] IF :NUMS3 =
 "ZERO [TYPE [THE ANSWER IS] PR (FIRST

:NUMS1)] [TEENS]
 PR [PRESS ANY KEY TO CONTINUE.]
END

Knowing :NUMS1 and :NUMS2, you can write down
what the first two lines of ADDNUMS will equal. Again, if
you can’t figure it out, add the print lines again:

MAKE "NUMS1 SE :NUMS1 :NUMS
MAKE "NUMS3 (FIRST :NUMS)
PR :NUMS1
PR :NUMS3
IGNORE RC

The third line is where things get a little complicated. But
you know all those commands. So just start from the right and
move through the line, one command at a time.

REPEAT (COUNT :NUMS2) - 1

Let’s say you typed WORDSUM "EIGHT "SIX. What
would :NUMS2 be?

[ZERO ONE TWO THREE FOUR FIVE SIX]

So, COUNTS :NUMS2 - 1 is what? I get six, what do
you get? So the line starts with REPEAT 6. Now what?

The next command is

MAKE "NUMS1 BF :NUMS1

 Talk To Your Computer

 515

First of all, what’s :NUMS1?

EIGHT NINE ZERO ONE TWO THREE FOUR FIVE
 SIX SEVEN EIGHT NINE

What is BF :NUMS1? Remember, BF is BUTFIRST. So
BF :NUMS1 is the list above without the first element, or

NINE ZERO ONE TWO THREE FOUR FIVE
 SIX SEVEN EIGHT NINE

Next, you come to:

IF (FIRST :NUMS1) — that’s now NINE, right?

IF (FIRST :NUMS1) = (FIRST :NUMS)
 [MAKE "NUMS3 FIRST BF :NUMS]

:NUMS is defined in the SETUP procedure. What’s
FIRST :NUMS? Does it equal FIRST :NUMS1? No. So the
procedure repeats again.

On the sixth repeat, what is FIRST :NUMS1?

Four, right?

What has :NUMS3 become? It became ONE on the third
repeat cycle. Since :NUMS3 does not equal ZERO, the
TEENS procedure is called.

Since FIRST :NUMS if four, the answer is FOURTEEN.

Awfully simple? Or simply awful?

Talk To Your Computer

516

“Wow! What can’t you do in Logo?”

“Well, Morf, the most important lesson is “Never say
never.” You and I aren’t experts, but have you ever found
anything you can’t do if you put your mind to it?

There is a WDTEEN.LGO procedure on the diskette that
comes with this book that gives you another look at how this
same type of addition can be done. You may like it better than
the one used here.

But, after all, that’s what this book is all about. You can
almost always find another way to do something, and it just
may be a lot easier.

Another thing you’ve got to realize is that we have just
scratched the surface of what you can do with Logo. There is
so much, much more you can do.”

“OK, we’re wasting time! What’s next?”
__

Logo and Artificial Intelligence
The whole idea of artificial intelligence gets very

confusing. It makes you wonder, just what is intelligence?
And how can it be artificial?

This is not the place to discuss whether computers can or
ever will be able to really learn. Leave that to the computer
scientists and philosophers.

For our purposes, computers of today don’t really learn.
It is the software that computers run that make them appear to
learn. So, if you look at it, the learning is really kind of

 Talk To Your Computer

 517

artificial. Maybe we can agree that this is a type of artificial
intelligence.

There are some examples of procedures that "learn" on
the CD that came with this book. There’s the well-known
Animal guessing game in \procs\chpt12 — ANIMAL.LGO.
This is a procedure where you teach Logo to recognize animals
by the descriptions you type.

Have you ever played the game States and Capitals?
Someone names a state. You have to name the capital of that
state. This edition of the game shows how the computer can
appear to be learning (STATES.LGO in \procs\chpt12).

By now you should have little if any trouble figuring out
how this procedure works. Sure, it might take some time. But
you can do it.

The main feature of this game is "lists within lists within
lists." First, there is the list of States and Capitals — SLIST.
If you ever want to erase this list and start over, type INIT.

Secondly, there is a list that matches each state with its
capital — GROUP.

Thirdly, there is a list of each state generated from the
variable :QUEST and one for each capital that comes from
:ANSWER.

Together, these look like this:

MAKE "SLIST [[[Oklahoma] [Oklahoma City]]
[[New York] [Albany]]
[[Texas][Austin]]
[[Massachusetts][Boston]]

Talk To Your Computer

518

[[California][Sacramento]]]

Logo "learns” new states and capitals from the TEACH
procedure.

The first thing that TEACH does is ask you to create the
variables, :QUEST and :ANSWER. It then creates a new
empty list named GROUP.

MAKE "GROUP []
Next, it adds the state (:QUEST) to the :GROUP list.

MAKE "GROUP LPUT :QUEST :GROUP

LPUT and FPUT are interesting commands. They are
used to add words or other lists to a list. For example:

LPUT "Logo [MSW]
results in the list [MSW Logo].

FPUT "MSW [Logo]
also results in the list [MSW Logo].

In the case of States and Capitals, LPUT tells Logo to add
:QUEST at the end of the list :GROUP. Once you have the
state listed, you need to add the capital.

MAKE "GROUP LPUT :ANSWER :GROUP

This line adds :ANSWER as the second list within the list
:GROUP.

MAKE "SLIST LPUT :GROUP :SLIST

 Talk To Your Computer

 519

And finally, this line adds the list of two lists to the master
list :SLIST.

Time to experiment.

Change the TEACH procedure to add a
third element to the GROUP list , maybe
the county of the capital or the population
of the state?

How would you change the other procedures to ask about
that third element?

Go ahead — try it. It’s really not that hard.

Rather than look for the LAST element of the GROUP

list, you might want to look for the LAST BUTLAST element,
or the FIRST BUTFIRST element, or select an ITEM from a
list that matches something else.
__

What’s Next "Seems we just got started and here we are. And there are
so many other things to do."

Well, there has to be something left for you to explore on
your own. You can start with the projects on the CD that came
with this book. This is what Logy and Morf like best, exploring
new ways to do things, finding new and better ways to make
things work.

By now you can do just about anything you want with
MSW Logo. What you don’t know, you can find —in the on-

Talk To Your Computer

520

line help files or in the Example procedures that came with
MSW Logo.

Want to explore some more? You’ll find a number of
interesting Logo sights on the Internet. There’s Logy and
Morf’s Home Page at

http://www.cyberramp.net/~jmul

Other addresses include:

http://www.softronix.com

for information on MSW Logo and other products from
George Mills.

For more information about UCB Logo, use the Logo
news group or discussion group as described below. Brian
Harvey is a regular participant in these forums.

 Talk To Your Computer

 521

There is a Logo news group at comp.lang.logo. There’s
also an on-line Logo mailing list, actually a discussion group.
To subscribe, send

subscribe logo-l to majordomo@gsn.org

One of your best sources of information about Logo and
Logo products is the non-profit organization:

The Logo Foundation
250 West 85th Street
New York, New York 10024
(212)579-8028
E-mail: michaelt@media.mit.edu
http://el.www.media.mit.edu/groups/logo-foundation

Most important! What ever you do, enjoy your very own

 GREAT LOGO ADVENTURE!
__

Talk To Your Computer

522

